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Abstract – The paper presents some analytical methods for solving the driving currents distribution in 
rectangular plates. Considering a rectangular conducting plate with a negligible (worthless) thickness, which is 
connected to a power supply through two conducting terminals, the paper analyses the stationary regime in 
order to obtain the values of electrical potential in every point of the plate. There are considered different 
Neumann boundary conditions, obtained for the cases of equal or non equal conducting terminals, and the 
symmetric and non symmetric position of the terminals. The problem is usually solved using numerical methods, 
especially based on finite elements. The paper presents an exact mathematical solution using an analytical 
method - the separation of variables in rectangular coordinates. There is also presented Green’s functions 
method (also known as the source function or influence function) and the results obtain using a rapidly 
convergent modified Green’s function for Lapalce’s equation. For the cases analyzed, the solution is expressed 
using Fourier series. Schwarz-Christoffel mapping guide to elliptic integrals, so that the solution can be 
performed based on the specialized toolbox of MathLAB - SC.    
Keywords - Laplace’s equation, rectangular region, modified Green’s function, separation of variable. 
 
 
Introduction 

 
The most satisfactory solution of a field problem 
is an exact mathematical one. Although in many 
practical cases such an analytical solution 
cannot be obtained and we must resort to 
numerical approximate solution, analytical 
solution is useful in checking solutions obtained 
from numerical methods. Also, one would 
hardly appreciate the need for numerical 
methods without first seeing the limitations of 
the classical analytical methods. The paper 
presents some of the most commonly used 
analytical methods in solving electromagnetic 
related problems: separation of variable, 
conformal mapping and Green’s functions 
method. 
The problem to solve in the next session consists 
in a rectangular plate witch dimensions are a 
and b, and the thickness g, as depicted in fig.1. 
The plate is connected to a power supply 
through two conducting stripes. For the 
beginning, we consider the same dimensions for 

both of the stripes and the position of them axial 
and symmetrical. The rectangular plate has a 
known conductivity, σ.  
 
The separation of variable 
 
Perhaps the most powerful analytical method is 
the separation of variable [1], [5]. Basically, it 
entails seeking a solution, which breaks up into 
a product of functions, each of which involves 
only one of the variables. 
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Fig.1- Rectangular plate with symmetrical 
stripes 
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The study for the case in fig.1, consists in 
solving Laplace’s equation in two rectangular 
coordinates (because g<<a, b we can neglect the 
third dimension, and study the potentials in xOy 
plane. Hence, we must solve Laplace’s equation 
inside the rectangle subject to inhomogeneous 
Neumann boundary conditions. Since Laplace’s 
equation is a linear homogeneous equation, 
applying the superposition principle can solve 
the problem. If we let 21 VVV += , we might 
induce the problem to two simpler problems, 
each of which being associated with one of the 
inhomogeneous conditions. Then, we must 
solve: 
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and the same Laplace’ equation (1) subject to: 

0
y

V

0y

2 =
∂
∂

=

 

0
y

V

by

2 =
∂
∂

=

 

0
x

V

0x

2 =
∂
∂

=
     (3) 

0
x

V

b,p
2
bp

2
b,0y

ax
2 =

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ −∈

=

U

 

 

gp
I

x
V

p
2
b,p

2
by

ax
2

⋅⋅
=

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ +−∈

= σ
 

The general solution for potential will be: 
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in the first case, and 
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for the second one. I represent the total electric 
driving current through the cross section of the 

 
 
stripes and σ is the electric conductivity. The 
image of potential distribution V1, V2 (using 
MathCad) are presented in fig.2, 3.  
Adding those two solutions, based on the 
superposition principle, we calculate the 
potential in each point of the plate. These values 
are represented in fig.4. 
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Fig.4 – Potential distribution in the rectangular 
plate with axial equal stripes 

 
The calculus can be repeated for different 
boundary conditions. For example, if the stripes 
are placed with a certain eccentricity, like it is 
shown in fig 5, the potential obtained using the 
separable variable method and the superposition 
principle is:  
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where p1 and p2 are the dimensions of the two 
stripes. These values are represented in fig.6.  
Using the superposition principle, it can be 
solved almost any field configuration of 
rectangular plate. In fig.7 is presented the 
distribution of electric potential the case in 
witch the stripes are equal.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6. Equipotentials       Fig.7. Equipotentials 
for unequal eccentrically      for equal 
eccentrically 

stripes                             stripes 
 

Green’s functions 

A more systematic means of obtaining an 
integral equation from a partial differential 
equation is by constructing an auxiliary function 
known as the Green’s function, or the source 
function. This is the kernel function obtained 
from a linear boundary value problem and forms 
the essential link between the differential and 
integral formulations.  
To obtain the field caused by a distributed 
source by the Green’s functions technique, we 
find the effects of each elementary portion of 
source and sum them up. If ( )'r,rG  is the field at 
the observation point (or field point) r  caused 
by a unit point source at the source point 'r , then 
the field at r  by a source distribution ( )'rg  is the 
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integral of ( ) ( )'r,rG'rg ⋅  over the range of 'r  
occupied by the source. The function G is the 
Green’s function, witch represents the potential 
at r  due to a unit point charge at 'r . For the 
problem in study, the points are defined in 
Cartesian coordinates.  
The Green’s Function G=G(x,y|x’,y’) for the 
rectangular region D with vertices (0,0), (a,0), 
(0,b) and (a,b) gives the potential at (x,y) due to 
a unit current source at the point (x’,y’), and is 
the solution of the differential equation 

( )
A
1'yy,'xxG2 −−−=∇− δ   (7) 

where δ is the Dirac delta function and A is the 
area of the rectangle, subject to the boundary 
condition that the normal derivative: 
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for all points (x,y) on the boundary of the 
rectangular region, D. The function G has the 
Fourier expansion: 
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where the coefficients are 000 =γ , 

2
1

0mn0 == γγ  and 1mn =γ  for 0m >  and 

0n > . The solution of Laplace’s equation in the 
rectangular region, with Neumann boundary 
condition is: 
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where dl is expressed in terms of x’ and y’, C is 
the rectangle contour and V0 is the mean value 
of V over the domain. Although in principle, this 
solution gives the required potential for any 
suitable problems, in practice, this is of very 
limited usefullness, owing to the extremely 
ppoor convergence proprieties of series 
expressed in (9).  
It is possible to derive a much more rapidly 

converging series by application of known 
results from the theory of Fourier series and 
integrals, as shown in [4].  
When the coefficients in (9) are assigned their 
appropriate values, the expresion of Green’s 
function along an electrode embedded in the 
boundary between endpoints y1 and y2, can be 
written as: 
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Using (10) for the calculus of electric potential 
distribution, for the case of a single electrod 
centred on the wall x=0, and assuming the 
current density across  this to be uniform, we 
obtain: 
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The equipotential drawn based on this relation 
are represented in fig. 8. 
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Fig.8- Equipotentials calculate with Green’s 
function 

 
Schwarz-Christoffel mapping 
 
The method of conformal mapping can offer 
some advantages: the field can be determined 
correctly by using complex analytical equations. 
This is very suitable for a computer simulation.  
The conformal mapping is a complex function, 
witch maps (transforms) the given configuration 
(in which the field should be determined) into a 
simple configuration (in which the field can be 
determined analytically), or vice versa. The 
simple configuration is usually an infinite half-
plane. 
A special kind of conformal mapping, known as 
Schwarz-Christoffel mapping, is suitable to 
analyze configurations with right angles, as it is 
the rectangular plate. 
The Schwarz-Christoffel mapping ( )wfz =  
maps the real axis of a vjuw ⋅+=  coordinate 
system onto the boundary of the polygon in the 

yjxz ⋅+= coordinate system, so that the upper 
half plane in w is mapped into the interior of the 
polygon in z.  
The Schwarz-Christoffel mapping is given by 
the integral: 
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Here, S and C are unknown integration 
constants (to be found from the geometry of the 
configuration), n is the number of the polygon 
corners, w1, …, wn are points on the real axis of 
the w coordinate system, corresponding to the 
polygon corners z1, …, zn, and αk are interior 
polygon angles. 
If 2n ≤ , the SC integral can be solved by using 
the elementary complex function. If 4n2 ≤< , 
the SC integral can be solved using elliptic 
functions. For 4n > , the SC integral cannot be 
solved analytically. 
The SC integral corresponding to the rectangular 
region from fig.1, is: 
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where 
k
1

±  represent the coordinates of two of 

the rectangle corners in w plane. As it was 
already said, the calculus of this integral can be 
made using the elliptic function of second kind, 
( )k,wE . By the definition of these, the solution 

will be: 
( ) ( ) Ck,wESwfz +⋅==                         (17) 

 

  
 

Fig.9- Equipotentials and driving currents lines 
using SC conformal mapping from Matlab 

 
The analytical calculus of elliptical integrals can 
be done only for certainness points, using 
mathematical tables.  
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There are also two sets of closed analytic 
functions for the approximate calculus of the 
complete elliptic integrals using series expand 
[6]. 
Another way to solve the problem is to use the 
Schwarz-Christoffel Toolbox from Matlab [2]. 
This is the way used to obtain the mappings in 
fig.9, corresponding to the same cases analysed 
in fig.6. 
 
Conclusions 
 
The paper shows a few methods suitable for the 
calculus of electric potential distribution in a 
rectangular domain with different boundary 
conditions.  
Due to the problem geometry, these were 
applied three different methods. The first one, 
the separation of variables, is an analytical 
method, which calculates the solution as an 
infinite Fourier series expound. The potential 
was determined considering the first ten terms of 
the series.  
The difficulties in solving the electrical potential 
distribution in the rectangular plate using the 
Green’s functions consist of writing these 
functions. For the problem geometry it was 
expressed using the Fourier expansion. 
The Schwarz-Christopher conformal mapping is 
based on the theory of the analytic complex 
functions, but, to solve the appropriate integral, 
the elliptic functions have to be used. Although 
the mapping is analytical, the final solution for 
the field is numerical, and it was obtained very 
fast and easy using the specialised Mat lab 
Toolbox. 
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